سمینار برق بررسی انواع ساختارهای مدارات آنالوگ به دیجیتال
سمینار برق بررسی انواع ساختارهای مدارات آنالوگ به دیجیتال |
![]() |
دسته بندی | سمینار برق |
فرمت فایل | |
حجم فایل | 859 کیلو بایت |
تعداد صفحات فایل | 50 |
سمینار برق بررسی انواع ساختارهای مدارات آنالوگ به دیجیتال
چکیده:
در این مجموعه سعی شده است که به بررسی انواع ساختارهای مختلف که برای طراحی و ساخت مدارات مجتمع آنالوگ به دیجیتال استفاده می شود پرداخته شود. برای جمع آوری این مجموعه از مرجع های فراوانی استفاده شده است و تقریبا تمامی ساختارهای معمول مدارات آنالوگ به دیجیتال آورده شده و مورد تحلیل واقع شده است. البته ممکن است مواردی باشند که در اینجا نام برده نشده اند، که البته آنها نیز مشتقی از موارد گفته شده هستند.
در این مجموعه ابتدا توضیحاتی در مورد ADC ها آورده شده است، سپس به معرفی ساختارهای مختلف پرداخته شده است. در این قسمت ها به بررسی نحوه عملکرد، اجزای مدار، مزایا و معایب ساختارها و همین طور مقایسه پرداخته شده است. ضمن اینکه نمونه هایی تجاری از هر ساختار مثال زده شده است و پارامترهای آن آورده شده است. ابتدا ساختار موازی سپس ساختار تقریب متوالی و پس از آن به ترتیب مبدل های ولتاژ به فرکانس، اجتماع تک شیب، متعادل کردن شارژ، اجتماع دو شیب، دلتا سیگما و خازن های سوئیچ شونده بررسی شده است.
در انتهای بررسی انواع ساختارها و بررسی عملکرد مداری ساختارهای مختلف، به بیان چگونگی انتخاب یک مبدل آنالوگ به دیجیتال برای کاربردی خاص و همین طور پارامترهایی که باید مدنظر قرار داد پرداخته شده است.
در نهایت نتیجه گیری و پیشنهادات مطرح شده است.
مقدمه:
در دنیای امروز با گسترش روزافزون دنیای دیجیتال باید به دنبال پلی برای ایجاد ارتباط بین دنیای آنالوگ و دیجیتال باشیم. این پل از طریق مبدل های آنالوگ به دیجیتال ساخته می شود. تکنیک های بسیاری برای طراحی مبدل های آنالوگ به دیجیتال وجود دارند که هرکدام از این تکنیک ها دارای امتیازات و محدودیت هایی هستند. در اینجا به معرفی برخی از این تکنیک ها در طراحی مدارات مبدل آنالوگ به دیجیتال پرداخته شده است.
هرکدام از این تکنیک ها ملزومات مداری مربوط به خود را دارد. در بعضی از این تکنیک ها دقت بیشتر مورد نظر بوده و در بعضی دیگر سرعت و در بعضی مواقع هزینه و قیمت بیشترین نقش را دارد. ذکر این نکته ضروری است که قبل از طراحی یک مبدل آنالوگ به دیجیتال باید دانشی کلی در باب انواع تکنیک های موجود داشت، تا با توجه به مزایا و محدودیت های این تکنیک ها و همین طور خصوصیات مبدل آنالوگ به دیجیتال، روشی برگزیده شود که بالاترین بازدهی را داشته باشد. همچنین برای رسیدن به بالاترین کارایی می توان از ترکیب این روش ها نیز استفاده کرد.
در تقسیم بندی انواع مبدل های آنالوگ به دیجیتال، آنها را به دو قسم یک مرحله ای و دو مرحله ای تقسیم می کند. این مجموعه بر مبنای این تقسیم بندی نبوده و انواع ساختارهای مختلف به طور مستقل مورد بررسی و تحلیل قرار گرفته است.
فصل اول: انواع ساختارهای با اهمیت مبدل های آنالوگ به دیجیتال
1-1) ساختار موازی Parallel encoder
در این تکنیک سیگنال ولتاژ ورودی به صورت همزمان به ورودی همه مقایسه گرها داده می شود و ورودی دیگر این مقایسه گرها به ولتاژی که از طریق ولتاژ مرجع و با تقسیم مقاومتی ایجاد می شود داده می شود. خروجی مقایسه گرها به یک encoder داده می شود تا کد دیجیتال خروجی که متناسب با سیگنال آنالوگ ورودی است را ایجاد کند. شکل 1-1 زیر شماتیک مداری پایه برای این تکنیک است.
سمینار برق بررسی انواع ساختارهای مدارات آنالوگ به دیجیتال
سمینار برق بررسی انواع ساختارهای مدارات آنالوگ به دیجیتال |
![]() |
دسته بندی | سمینار برق |
فرمت فایل | |
حجم فایل | 859 کیلو بایت |
تعداد صفحات فایل | 50 |
سمینار برق بررسی انواع ساختارهای مدارات آنالوگ به دیجیتال
چکیده:
در این مجموعه سعی شده است که به بررسی انواع ساختارهای مختلف که برای طراحی و ساخت مدارات مجتمع آنالوگ به دیجیتال استفاده می شود پرداخته شود. برای جمع آوری این مجموعه از مرجع های فراوانی استفاده شده است و تقریبا تمامی ساختارهای معمول مدارات آنالوگ به دیجیتال آورده شده و مورد تحلیل واقع شده است. البته ممکن است مواردی باشند که در اینجا نام برده نشده اند، که البته آنها نیز مشتقی از موارد گفته شده هستند.
در این مجموعه ابتدا توضیحاتی در مورد ADC ها آورده شده است، سپس به معرفی ساختارهای مختلف پرداخته شده است. در این قسمت ها به بررسی نحوه عملکرد، اجزای مدار، مزایا و معایب ساختارها و همین طور مقایسه پرداخته شده است. ضمن اینکه نمونه هایی تجاری از هر ساختار مثال زده شده است و پارامترهای آن آورده شده است. ابتدا ساختار موازی سپس ساختار تقریب متوالی و پس از آن به ترتیب مبدل های ولتاژ به فرکانس، اجتماع تک شیب، متعادل کردن شارژ، اجتماع دو شیب، دلتا سیگما و خازن های سوئیچ شونده بررسی شده است.
در انتهای بررسی انواع ساختارها و بررسی عملکرد مداری ساختارهای مختلف، به بیان چگونگی انتخاب یک مبدل آنالوگ به دیجیتال برای کاربردی خاص و همین طور پارامترهایی که باید مدنظر قرار داد پرداخته شده است.
در نهایت نتیجه گیری و پیشنهادات مطرح شده است.
مقدمه:
در دنیای امروز با گسترش روزافزون دنیای دیجیتال باید به دنبال پلی برای ایجاد ارتباط بین دنیای آنالوگ و دیجیتال باشیم. این پل از طریق مبدل های آنالوگ به دیجیتال ساخته می شود. تکنیک های بسیاری برای طراحی مبدل های آنالوگ به دیجیتال وجود دارند که هرکدام از این تکنیک ها دارای امتیازات و محدودیت هایی هستند. در اینجا به معرفی برخی از این تکنیک ها در طراحی مدارات مبدل آنالوگ به دیجیتال پرداخته شده است.
هرکدام از این تکنیک ها ملزومات مداری مربوط به خود را دارد. در بعضی از این تکنیک ها دقت بیشتر مورد نظر بوده و در بعضی دیگر سرعت و در بعضی مواقع هزینه و قیمت بیشترین نقش را دارد. ذکر این نکته ضروری است که قبل از طراحی یک مبدل آنالوگ به دیجیتال باید دانشی کلی در باب انواع تکنیک های موجود داشت، تا با توجه به مزایا و محدودیت های این تکنیک ها و همین طور خصوصیات مبدل آنالوگ به دیجیتال، روشی برگزیده شود که بالاترین بازدهی را داشته باشد. همچنین برای رسیدن به بالاترین کارایی می توان از ترکیب این روش ها نیز استفاده کرد.
در تقسیم بندی انواع مبدل های آنالوگ به دیجیتال، آنها را به دو قسم یک مرحله ای و دو مرحله ای تقسیم می کند. این مجموعه بر مبنای این تقسیم بندی نبوده و انواع ساختارهای مختلف به طور مستقل مورد بررسی و تحلیل قرار گرفته است.
فصل اول: انواع ساختارهای با اهمیت مبدل های آنالوگ به دیجیتال
1-1) ساختار موازی Parallel encoder
در این تکنیک سیگنال ولتاژ ورودی به صورت همزمان به ورودی همه مقایسه گرها داده می شود و ورودی دیگر این مقایسه گرها به ولتاژی که از طریق ولتاژ مرجع و با تقسیم مقاومتی ایجاد می شود داده می شود. خروجی مقایسه گرها به یک encoder داده می شود تا کد دیجیتال خروجی که متناسب با سیگنال آنالوگ ورودی است را ایجاد کند. شکل 1-1 زیر شماتیک مداری پایه برای این تکنیک است.
سمینار برق بررسی قابلیت اطمینان شبکه های توزیع در حضور منابع تولید پراکنده
سمینار برق بررسی قابلیت اطمینان شبکه های توزیع در حضور منابع تولید پراکنده |
![]() |
دسته بندی | سمینار برق |
فرمت فایل | |
حجم فایل | 915 کیلو بایت |
تعداد صفحات فایل | 69 |
سمینار برق بررسی قابلیت اطمینان شبکه های توزیع در حضور منابع تولید پراکنده
چکیده
تولیدات پراکنده منابع تولید انرژی الکتریکی هستند که به شبکه توزیع متصل می گردند. این منابع در مقایسه با ژنراتورهای بزرگ و نیروگاه ها، حجم و ظرفیت تولید کمتری داشته و با هزینه پایین تری راه اندازی می شوند. اتصال این تولیدات به شبکه های توزیع منافع و سودمندی های زیادی به دنبال دارد. در این سمینار به بررسی تاثیرات مفید تولیدات پراکنده بر قابلیت اطمینان شبکه های توزیع پرداخته شده است. و نتایج ارزیابی قابلیت اطمینان شبکه های توزیع در قابل شاخص های نقاط بار و کل سیستم مورد بررسی قرار گرفته است. در این سمینار به بررسی تأثیر مکان واحدهای تولید پراکنده تأثیر تعداد واحدهای تولید پراکنده، تأثیر ظرفیت واحدهای تولید پراکنده و تأثیر احتمال عدم دسترسی به واحدهای تولید پراکنده بر روی یک سیستم نمونه پرداخته شد و مشاهده گردید که همواره، قرارگیری صحیح با ظرفیت و تعداد مناسب از منابع تولید پراکنده افزایش قابل ملاحظه ای در میزان قابلیت اطمینان سیستم های توزیع خواهد داشت.
مقدمه
با تحول سیستم های قدرت از ساختار سنتی به سمت ساختار رقابتی از یک سو و پیشرفت تکنولوژی از سوی دیگر انتظار می رود که تولیدات کوچک موسوم به تولید پراکنده، نقش اساسی و مهمی را در آینده این صنعت بازی کند.
عوامل محرک فراوانی باعث افزایش تمایل به بکارگیری منابع تولید پراکنده شده است. به طور کلی می توان گفت مهمترین مزیت استفاده از این تولیدات، نزدیکی به مصرف کننده و در نتیجه کاهش تلفات و بهبود قابلیت اطمینان بار و شبکه است. در کنار آن می توان به حذف محدودیت های مکانی و جغرافیایی تولیدات کوچک نسبت به نیروگاه های بزرگ، حذف یا کاهش هزینه های مربوط به احداث و بهره برداری از شبکه های انتقال و توزیع، ریسک پایین در سرمایه گذاری، زمان نصب و راه اندازی کمتر، محیط زیست پاک تر، امکان تولید توان های بالا از واحدهای با حجم کم و استفاده از منابع انرژی های تجدیدپذیر همچون باد و خورشید اشاره نمود.
فصل اول
مقدمه ای بر تولیدات پراکنده
1-1- مقدمه
سیستم قدرت را می توان مجموعه ای از ادوات تولید، انتقال و توزیع انرژی دانست که برق توسط آنها تولید شده و به مصرف کننده تحویل داده می شود. در ساختار قدیم صنعت برق در کشورهای پیشرفته و وضعیت موجود بسیاری از کشورها، وظایف تولید، انتقال و توزیع توان بر عهده شرکت های برق مجتمع (VIU) بود؛ در واقع برق تنها در نیروگاه های بزرگ تولید می شد و تعدادی تجهیزات متمرکز، کل وظیفه انتقال، توزیع و تأمین برق مشترکین را بر عهده داشتند.
در حال حاضر سه نوع نیروگاه در جهان مشغول به کار هستند:
1- نیروگاه آبی که هم از نیروی رودخانه ها و هم از انواع سدها برای تولید استفاده می کند.
2- نیروگاه حرارتی که هم از زغال و نفت و گاز برای تولید بهره می گیرد.
3- نیروگاه هسته ای.
ساختار سیستم های قدرت فعلی مدام در حال تغییر است که به دلایل زیر انجام می شود:
1- محدودیت های جغرافیایی برای نیروگاه های بزرگ
2- مشکلات پایداری و حفاظتی
3- افزایش درخواست برق به خصوص در کشورهای در حال توسعه
4- رقابت بازارهای جهانی
5- تکنیک های تولید برق اضطراری در ظرفیت های کوچک
سمینار برق بازآرایی شبکه های توزیع جهت کاهش تلفات
سمینار برق بازآرایی شبکه های توزیع جهت کاهش تلفات |
![]() |
دسته بندی | سمینار برق |
فرمت فایل | |
حجم فایل | 2661 کیلو بایت |
تعداد صفحات فایل | 103 |
سمینار برق بازآرایی شبکه های توزیع جهت کاهش تلفات
چکیده:
شبکه توزیع بخشی از ساختار کلی سیستم های قدرت به شمار می رود و به عنوان مرحله نهایی از زنجیره تولید و انتقال انرژی الکتریکی به محل مصرف شناخته می شود. این بخش به جهت ویژگی های خاص خود، عمده تلفات شبکه قدرت را در خود متمرکز کرده و به این جهت عمده تلاش های انجام شده جهت کاهش تلفات، در دسته مطالعات شبکه توزیع بوده است. بازآرایی شبکه توزیع یکی از اساسی ترین و باصرفه ترین راه حل های موجود جهت کاهش تلفات شبکه توزیع می باشد که امروزه در شبکه های تحت اتوماسیون به طور قابل توجهی اعمال می گردد. بازآرایی از ابتدا تحت عنوان یک مسأله بهینه سازی پیچیده، در بین محققان مطرح شد و روش های زیادی برای حل آن ارایه گردید که هریک، چه از لحاظ سرعت و چه از لحاظ دقت در رسیدن به جواب بهینه با یکدیگر متفاوت بودند. همچنین امکان اجرای عملی برخی از این روش ها نیز در شبکه های توزیع واقعی، به جهت ابعاد وسیع آنها وجود نداشت. در این سمینار سعی شده است تا تمام مراجع مربوط به این بخش از مطالعات شبکه توزیع به دقت مورد بررسی قرار گیرند.
مقدمه:
انرژی الکتریکی به جهت مزایای ویژه ای چون پاکیزگی، قابلیت تبدیل به سایر انرژی ها، قابلیت انتقال و کنترل آسان و نهایتا، راندمان بالای تجهیزات مربوطه، سال هاست که به طور گسترده، در سطوح ولتاژ متنوعی مورد استفاده بشر قرار می گیرد. از زمانی که این انرژی، توسط بشر به خدمت گرفته شد، همواره تلفات انرژی الکتریکی به عنوان اصلی ترین عامل بازدارنده گسترش محدوده تحت پوشش شبکه های قدرت، مطرح بوده است. در این میان، بخش توزیع است که عمده تلفات شبکه قدرت را در خود متمرکز کرده و به این جهت عمده تلاش های انجام شده جهت کاهش تلفات در این بخش بوده است. بازآرایی، یکی از اساسی ترین و باصرفه ترین راه حل های موجود جهت کاهش تلفات شبکه توزیع می باشد. بازآرایی از ابتدا تحت عنوان یک مسأله بهینه سازی پیچیده، در بین محققان مطرح شد و روش های زیادی برای حل آن ارایه گردید که هریک، چه از لحاظ سرعت و چه از لحاظ دقت در رسیدن به جواب بهینه با یکدیگر متفاوت بودند. همچنین امکان اجرای عملی برخی از این روش ها نیز در شبکه های توزیع واقعی، به جهت وسعت زیاد آنها وجود نداشت. به تدریج به واسطه پیشرفت سریع علوم رایانه در عرصه محاسبات مهندسی، نسل جدیدی از روش های بهینه سازی، تحت عنوان روش های متاهیورستیک، پا به عرصه گذاشتند و بدین ترتیب امکان مدلسازی دقیق ساختار شبکه توزیع فراهم گشت. به عنوان نمونه، امکان مدلسازی تغییرات لحظه ای بار و یا مدلسازی بارهای غیرخطی و نیز مدلسازی تولیدات پراکنده در شبکه فراهم شد که این امر موجب نیل به آرایش بهتری از شبکه در طول عملیات بازآرایی گردید. در این سمینار سعی شده است تا تمام موارد فوق، به دقت مورد بررسی قرار گیرند. به این منظور در فصل اول به بیان کلیات مساله و اهمیت موضوع پژوهش پرداخته و سپس در فصل دوم به بیان مقدماتی مساله بازآرایی، اهداف، قیود و روش های تحلیل آن اشاره خواهیم کرد. در فصل سوم به تشریح دسته وسیعی از روش های هیوریستیک در تحقیق بازآرایی اقدام خواهیم کرد و در فصل چهارم نیز تشریحی بر گستره وسیعی از روش های متاهیورسیتیک در تحقق بازآرایی ارایه خواهد شد. در فصل پنجم بررسی را بر شبکه های توزیع واقعی متمرکز خواهیم کرد و بر محدودیت ها و پارامترهای قابل رویت در این شبکه ها اشاره خواهیم کرد. حضور تولیدات پراکنده و بارهای هارمونیکی از جمله این محدودیت ها و پارامترها می باشند. در این فصل روند برخورد با مساله بهینه سازی بازآرایی را در حضور این ادوات بررسی خواهیم کرد. در نهایت در فصل ششم نتیجه گیری و پیشنهادات حاصل از این تحقیق ارایه می شود.
فصل اول
کلیات و بیان اهمیت موضوع پژوهش
مقدمه
مهندسی توزیع یکی از شاخه های مهندسی قدرت می باشد و کارشناسان این بخش به تجزیه تحلیل بخشی از سیستم قدرت به نام بخش توزیع می پردازد. این بخش از سیستم قدرت، انرژی الکتریکی را پس از تولید در نیروگاه ها در بخش تولید و انتقال از طریق خطوط انتقال، در سطح ولتاژ معینی دریافت و پس از تبدیل به سطوح ولتاژ مورد نیاز مصرف کنندگان، در اختیار آنها قرار می دهد. در این بخش ضمن بررسی آماری تلفات شبکه های قدرت و سهم شبکه های توزیع از کل تلفات به روش های کاهش تلفات اشاره کرده و نهایتا بازآرایی شبکه توزیع را به عنوان ابزاری کارآمد جهت کاهش تلفات معرفی خواهیم کرد.
سمینار برق انتخاب ساختار کنترل برای موج های تقطیر
سمینار برق انتخاب ساختار کنترل برای موج های تقطیر |
![]() |
دسته بندی | سمینار برق |
فرمت فایل | |
حجم فایل | 728 کیلو بایت |
تعداد صفحات فایل | 84 |
سمینار برق انتخاب ساختار کنترل برای موج های تقطیر
سمینار برق بررسی الگوریتم بهینه سازی و انواع کاربردهای آن
سمینار برق بررسی الگوریتم بهینه سازی و انواع کاربردهای آن |
![]() |
دسته بندی | سمینار برق |
فرمت فایل | |
حجم فایل | 613 کیلو بایت |
تعداد صفحات فایل | 65 |
سمینار برق بررسی الگوریتم بهینه سازی و انواع کاربردهای آن
چکیده
در این سمینار الگوریتم جستجوی محلی Simulated Annealing,SA (پخت شبیه سازی شده) را معرفی کرده و جزئیات، مزایا، معایب و کاربردهای آن را مورد بررسی قرار خواهیم داد به طوری که روش های توسعه یافته این الگوریتم نیز به اجمال معرفی می شوند. سپس اهمیت تعیین مشخصات مدارات الکترونیکی (Circuit Sizing) را با انواع روش های موجود برای این کار را مورد بررسی و مقایسه قرار می دهیم. برنامه ریزی هندسی و روش های بر پایه شبیه سازی معروف ترین استراتژی هایی هستند که برای تعیین مشخصات مدار به منظور بهینه سازی آنها به کار می روند که در ادامه با توجه به ضرورت بهینه سازی بلوک های جمع کننده و ضرب کننده که عنصر اصلی در مدارات دیجیتال می باشند، روش SA را به عنوان یک الگوریتم ساده و با قابلیت یافتن نقطه بهینه در کل برای حداقل شدن توان مصرفی و تاخیر در این بلوک ها، انتخاب می کنیم.
مقدمه
جستجو برای یافتن خواسته های مطلوب و بهینه از میان گزینه های قابل انتخاب جزء مسائلی است که بشر همواره با آن مواجه بوده است. در زندگی روزمره نیز به کرات با چنین مسائلی مواجه هستیم مانند: انتخاب یک محل مناسب برای زندگی، تنظیم جدول زمانی برای امتحانات سراسری، یافتن بهترین مسیر برای مسافرت با وسیله نقلیه، حرکت مناسب در بازی شطرنج و… نه تنها در زندگی روزمره بلکه در انواع مسائل مهندسی، معماری، مالی، اقتصادی، تحقیقات اپراتوری، پزشکی، نظامی و… به نوعی با مسائل بهینه سازی مواجه هستیم.
در تمام مسائل جستجو واضح است که یافتن یک حل ممکن برای مسئله بسیار آسان تر از یافتن بهترین حل می باشد. محدودیت ها در یافتن بهترین جواب ناشی از زمان، منابع در دسترس، پیچیدگی طبیعی خواسته های بهینه سازی و کثرت گزینه های قابل انتخاب می باشد.
در بعضی از مسائل بهینه سازی باید عملیات جستجو به نحوی انجام شود که چندین تابع هزینه باهم بهینه شوند (Multi objective). همچنین محدودیت ها و قیودات مختلفی بسته به نوع مسئله وجود دارد به عنوان مثال برای تنظیم بهینه جدول زمانی امتحانات یک دانشگاه چندین موضوع باید در نظر گرفته شود مانند: تعداد دانشجویانی که امتحانات پشت سرهم دارند، تعداد دانشجویانی که بیشتر از یک امتحان در یک روز دارند، حداکثر زمان مشخص شده برای کل امتحانات، حداکثر اتاق های قابل استفاده، تعداد مراقبان امتحانات و… بدون شک پیدا کردن جوابی که تمام خواسته ها و محدودیت ها را برآورده کند کاری بسیار مشکل می باشد.
برای یافتن بهترین جواب باید بیشترین جستجو را انجام داد این خود باعث صرف شدن زمان زیاد و تلاش محاسباتی (effort) حجیم می شود. در مسائل بهینه سازی باید مصالحه ای بین کیفیت جواب و زمان و تلاش محاسباتی برقرار شود. چنانچه محدودیت کمی برای زمان و تلاش محاسباتی وجود داشته باشد می توانیم بیشترین جستجو را انجام دهیم یعنی فضاهای جستجو را به اندازه ممکن بزرگ در نظر گرفته و نقاط بیشتری را از یک فضای مشخص به عنوان حل های ممکن در نظر بگیریم. اما چنانچه محدودیت های ما بر روی زمان و تلاش محاسباتی زیاد باشد نمی توانیم همه نقاط ممکن را جستجو کنیم در نتیجه برای رسیدن به جواب مناسب باید روشی را پیدا کنیم که به سمت جواب های بهتر هدایت شویم. در واقع به جای جستجوی همه نقاط ممکن (explore) باید اطلاعات به دست آورده از جستجوهای قبلی را طوری تحلیل کنیم تا به سمت نقاط بهتر هدایت شویم (exploite). البته این عمل در بعضی از مسائل بسیار مشکل می باشد.
سمینار برق بررسی قابلیت اطمینان تولید در محیط تجدید ساختار
سمینار برق بررسی قابلیت اطمینان تولید در محیط تجدید ساختار |
![]() |
دسته بندی | سمینار برق |
فرمت فایل | |
حجم فایل | 507 کیلو بایت |
تعداد صفحات فایل | 68 |
سمینار برق بررسی قابلیت اطمینان تولید در محیط تجدید ساختار
چکیده
سیستم های قدرت الکتریکی قابل اطمینان بدون وقفه بار مشتریان را در ولتاژ قابل قبول تامین می نمایند. تسهیلات تولید بایستی توان کافی برای مواجهه با تقاضای مشتری را تامین کند.
از طرفی، وضعیت انحصاری شرکت های برق باعث انجام سرمایه گذاری غیرضروری و کاهش انگیزه بهره برداری موثر است. اقتصاددانان پیشنهاد کردند که برق به جای عرضه با مقررات انحصاری یا طبق سیاست های دولتی به صورت کالایی طبق قواعد بازار ارائه گردد که نتیجه آن کاهش قیمت و افزایش منفعت کلی خواهد بود. توسعه بازارهای برق، مبتنی بر فرض قابل خرید و فروش بودن انرژی الکتریکی همچون یک کالا می باشد. از این تحول به نام تجدیدساختار نیز یاد می شود.
حفظ قابلیت اطمینان حتی بدون تجدیدساختار دشوار بود. قابلیت اطمینان در ساختار سنتی نسبت به سیستم قدرت تجدید ساختاریافته از نظر کفایت، امنیت و التزام سرویس دهی متحول شد و فاکتورهای جدیدی نظیر رقابت نیز مطرح شدند.
نیاز به تعریف نهادهای سود برنده و مسئولیت پذیر جدید، نظامنامه ها و استانداردهای جدید در سستم قدرت تجدید ساختار یافته، روش های سرمایه گذاری کارآمد و نیاز به سطوح مختلف قابلیت اطمینان از جمله ضرایب پیچیدگی جدید مطرح در بازار می باشد. مسئولیت پذیری های قابلیت اطمینان در بازار تغییر پیدا کرد و قیود قابلیت اطمینان به عنوان قیدی لازم الاجرا در مطالعات اقتصادی بازار مطرح گردید.
در محیط جدید، به علت قابل استفاده نبودن شاخص های گذشته، شاخص های متفاوتی مطرح شد که به عنوان مثال می توان به شاخص های LOSBE و EUP و POST و شاخص هزینه وقفه مشتری اشاره کرد. در برخی موارد نیز تعریف و روش محاسبه شاخص های قبلی برای قابل استفاده شدن در ساختار جدید مبتنی بر اقتصاد، اصلاح شدند.
روش های محاسبه جدیدی نیز در این ساختار به وجود آمد، مانند Z-Method، تکنیک قابلیت اطمینان معادل و غیره که برخی از حاصل تغییراتی در متدهای قبلی برای تطبیق با بازار بودند.
مباحث جدیدی در سیستم جدید مطرح شدند که در ساختار سنتی جایگاهی نداشتند. از جمله آنها می توان به واحدهای RMR و برهم کنش قیمت برق و قابلیت اطمینان اشاره کرد که در مقالات زیادی پیرامون آن بحث شده است.
توسعه تکنولوژی هوشمند برای منسوجات و پوشاک
توسعه تکنولوژی هوشمند برای منسوجات و پوشاک |
![]() |
دسته بندی | نساجی |
فرمت فایل | doc |
حجم فایل | 47 کیلو بایت |
تعداد صفحات فایل | 50 |
توسعه تکنولوژی هوشمند برای منسوجات و پوشاک
مقدمه
توسعه تکنولوژی هوشمند برای منسوجات و پوشاک
رئوس مطالب
هدف این مجموعه ویرایش شده، که یک بازبینی و بررسی آخرین توسعه های تکنولوژی هوشمند مربوط به منسوجات و پوشاک است. مخاطبین این جزوه دانشگاهیان، پژوهشگران ، طراحان، مهندسان عرصه توسعه محصولات منسوج و پوشاک و فارغ التحصیلان و دانشجویان کالج ها و دانشگاهها میباشند.
همچنین این مجموعه میتواند آخرین بینش های مربوط به توسعه تکنولوژیک را به مدیران شرکتهای منسوجات و پوشاک بدهد.
این مطالب با مشارکت هیئتی از کارشناسان بین المللی در این زمینه تهیه شده و بسیاری از جنبههای توسعه و پژوهش را پوشش میدهد. تحقیق متشکل از 17 فصل می باشد که میتوان آن را به چهار بخش تقسیم کرد.
بخش اول (فصل 1) اطلاعات زمینهای مربوط به تکنولوژی هوشمند برای منسوجات و پوشاک و خلاصه ای از مرور بر تولیدات و ساختار پروژه را به دست می دهد
. بخش دوم شامل موضوعات مربوط به الیاف یا مواد است که از فصل 2 تا 3 میباشد. فصل 2 به موضوعات مربوط به مواد پلیمری فعال شونده به وسیله برق و کاربردهای الاستومرها و ژل پلیمر غیریونی برای ماهیچه های مصنوعی میپردازد
. فصل 3 و مربوط به پارچه ها و الیاف حساس به گرما است.
در بخش سوم تمرکز بر فرایندهای مجتمع سازی و ساختارهای مجتمع است و خود شامل فصلهای دیگر است
. فصل 4 مروری بر تولید و جریان های کلیدی ترکیبات هوشمند فیبر نوری است. فصل 5 بیان کننده غشاءهای فیبرتوخالی برای جداسازی گاز است. فصل 6 قلاب دوزی را به عنوان یک روش مجتمع سازی اجزاء تشکیل دهنده فیبر در ساختارهای منسوج توصیف می کند.
بخش چهارم روی کاربردهای زیست شناختی تمرکز دارد. فصل 7 فرآیندهای زیست شناختی مختلف برای پوشاک و منسوجات هوشمند را توضیح می دهد. ما فقط بخش کوچکی از تکنولوژی ظهور را از طریق پنجره این تحقیق دیده ایم . امکانپذیری های ارائه شده بوسیله این تکنولوژی هوشمند بسیار زیاد گسترده است. حتی در حالیکه کتاب در حال آماده شدن بود، بسیاری از پیشرفت های جدید از سراسر جهان جمع آوری گردیده است. ما امیدواریم که این تحقیق بتواند به پژوهشگران و طراحان پوشاک و منسوجات الیاف هوشمند در آینده جهت واقعیت بخشیدن به رؤیاهایشان ، کمک کننده باشد.
از قرن نوزدهم ، تغییرات تحول گونه با سرعتی غیر قابل انتظار در بسیاری از حوزه های علم و تکنولوژی صورت گرفته است که اثرات عمیقی بر زندگی بشر گذاشته است. اختراع چیپ های الکترونیکی، رایانهها، اینترنت، کشف و تکمیل نقشه ژنوم انسانی و بسیاری موارد دیگر کل جهان را تغییر داده است قرن گذشته پیشرفت های فوق العاده ای نیز دز صنعت منسوجات و پوشاک بوجود آورده که دارای تاریخ چندهزار ساله است. شالوده های اساسی درک علوم طراحی شده است تا راهنمای کاربرد بهینه و پردازش تکنولوژی الیاف طبیعی و تولید الیاف سنتزی باشد. ما چیزیهای زیادی از طبیعت آموختهایم. رایون ویسکوز، نایلون، پلی استر و سایر الیاف سنتزی در ابتدا براساس تقلید از همتاهای طبیعی آنها ابداع گردید. این تکنولوژی به گونه ای پیشرفت کرده است که الیاف سنتزی و محصولات آنها در بسیاری از جنبه ها از آنها فراتر رفته است.
روش های بیولوژیکی برای سنتز کردن پلیمرها یا منسوجات بیانگر یک روش دوستانه محیط زیستی و انعطاف پذیر برای بکارگیری منابع طبیعی است. طراحی و پردازش به کمک رایانه ها ، اتوماسیون با کنترل راه دور متمرکز یا پراکنده و سیستم های مدیریت تأمین زنجیره ای متمرکز اینترنت محور بیش از پیش مشتری ها را به ابتدای زنجیره نزدیک میکند.
با نگاه به جلو درمییابیم که در آینده این وضعیت بیشتر هم خواهد شد. در نتیجه توسعه های بعد ما باید انتظار چه ظرفیت های جدیدی را داشته باشیم؟ این ظرفیت ها حداقل باید شامل مقیاس نانو، پیچیدیگ، شناخت و کل گرایی باشد. توانایی جدید مقیاس ترا سه درجه اهمیت را علاوه بر هدف کلی حاضر و ت وانایی های محاسباتی قابل دسترسی کلی به ما می دهد. در یک زمان کوتاه ما به میلیون ها سیستم و بیلیون ها اطلاعات موجود در اینترنت متصل خواهیم شد. تکنولوژی هایی که امکان بیش از یک تریلیون عمل در ثانیه را می دهند در دستور کار پژوهش است. تکنولوژی در مقیاس نانو سه درجه اهمیت پایین تر از اندازه بیشتر ابزار انسان ساخته امروزی را به ما می دهد. این تکنولوژی به ما امکان می دهد تا اتم ها و مولکول ها را به گونه ای کم هزینه و با بیشترین روشهای ممکن از نظر قوانین فیزیکی چینش کنیم. این تکنولوژی به ما اجازه می دهد تا ابررایانه هایی بسازیم که روی سر یک الیاف و دسته ای از نانوروبوت های پزشکی کوچکتر از یک سلول انسان قرار بگیرد تا سرطانها، عفونت ها ، شریانهای مسدود شده و حتی سن پیری را درمان کند. تولید مولکولی دقیقا مشخص می کند که چه چیزی باید ساخته شود و هیچ ماده آلوده کنندهای تولید نمیگردد.
ما در این دوره هیجان انگیز زندگی می کنیم و تأثیرات بزرگ تکنولوژی بر صنعت نساجی و پوشاک سنتی که دارای یک چنین تاریخ طولانی است حس می کنیم. به لحاظ سنتی بسیاری از حوزه های علم و مهندسی تفکیک و متمایز شده اند. اخیراً حرکت قابل توجه و همگرایی بین این حوزه های تلاشگری صورت گرفته و نتایج آن خیره کننده بوده است. تکنولوژی اسمارت برای مواد اولیه و ساختارها یکی از این نتایج است.
ساختارها و مواد هوشمند چه هستند؟ در طبیعت مثال های زیادی از ساختارهای هوشمند وجود دارد. یک موجود زنده تک سلولی ساده میتواند مبانی موضوع را روشن کند. همانگونه که در شکل 1-1 نشان داده شده شرایط متنوع زیست محیطی یا محرک ها روی لایه بیرونی عمل می کنند. این شرایط با محرک ها ممکن است به شکل نیرو، درجه حرارت، تشعشع ، واکنش های شیمیایی و میدانهای مغناطیسی و الکتریکی باشد.
حسگرهای موجود در لایه بیرونی این اثرات شناسایی می کند و اطلاعات حاصله برای تفسیر و پردازش سیگنال به نقطه ای متصل می شود. که در آن سلول نسبت به این شرایط زیست محیطی یا محرک ها به روشهای متعددی مانند حرکت، تغییر ترکیب شیمیایی و کنش های باز تولیدی، واکنش نشان می دهد. طبیعت بیلیون ها سال و یک آزمایشگاه وسیع در اختیار داشته تا زندگی را توسعه دهد، در حالیکه نوع انسانی تازه شروع به خلق ساختارها و مواد هوشمند کرده است.
ساختارها و مواد هوشمند را میتوان به صورت مواد و ساختارهایی تعریف کرد که محرکها یا شرایط محیطی، مانند آنچه از منابع مکانیکی، گرمایی، شیمیایی، الکتریکی، مغناطیسی یا سایر منابع حاصل میشود، را حس کرده و نسبت به آن واکنش نشان میدهد. بر طبق حالت واکنش میتوان آنها را به مواد هوشمند منفعل ، هوشمند فعال و بسیار هوشمند تقسیم کرد. مواد هوشمند منفعل فقط میتوانند شرایط محیطی یا محرک ها را حس کنند؛ مواد خیلی هوشمند خودشان می توانند حس کرده، واکنش نشان دهند و سازگار شوند. حتی سطح بالاتری از هوش را میتوان از ساختارها و مواد هوشمند کسب کرد که قادرند پاسخ داده یا برای اجرای یک عمل در یک حالت دستی یا از پیش برنامه ریزی شده فعال شوند.
در اینگونه مواد سه جزء ممکن است وجود داشته باشد: حس گرها، محرک ها و واحدهای کنترل. حسگرها یک سیستم عصبی را برای شناسایی سیگنال ها تأمین می کنند. بنابراین در یک ماده هوشمند منفعل، وجود حسگرها ضروری است. محرک ها به طور مستقیم از یک واحد کنترل روی سیگنال های شناسایی شده کار می کنند. آنها نیز به همراه حسگرها عناصر ضروری برای مواد هوشمند فعال میباشند. حتی در سطوح بالاتر، همانند مواد هوشمند یا خیلی هوشمند، نوع دیگری از واحد ضروری است، که همانند مغز از طریق شناخت، استدلال و فعال سازی ظرفیت ها عمل می کند. اینگونه ساختارها و مواد منسوج در نتیجه ترکیب موفق تکنولوژی پوشاک و منسوجات سنتی با علم مواد، مکانیک های ساختاری، حسگرها و تکنولوژی محرک ها، تکنولوژی پردازش پیشرفته، ارتباطات، هوش مصنوعی، بیولوژی و غیره، درحال تبدبل شدن به یک امر ممکن است.
سمینار برق کاربرد آنتن های دایورسیتی پلاریزاسیون در WLAN و مخابرات بی سیم
سمینار برق کاربرد آنتن های دایورسیتی پلاریزاسیون در WLAN و مخابرات بی سیم |
![]() |
دسته بندی | سمینار برق |
فرمت فایل | |
حجم فایل | 455 کیلو بایت |
تعداد صفحات فایل | 72 |
سمینار برق کاربرد آنتن های دایورسیتی پلاریزاسیون در WLAN و مخابرات بی سیم
چکیده
مزایای استفاده از انواع مختلف دایورسیتی در مخابرات بی سیم از زمان اولین سیستم های رادیویی موبایل شناخته شده است. انواع دایورسیتی مانند فاصله ای، پلاریزاسیون، زاویه و یا فرکانس برای بهبود بخشیدن به نسبت سیگنال به نویز، نرخ خطای بیت، ظرفیت کانال و صرفه جویی توان در یک لینک موبایل استفاده می شود.
در بسیاری از سیستم های عملی به دلیل صرفه جویی در فضای اشغال شده توسط آنتن و همچنین قیمت تمام شده، از آنتن دایورسیتی پلاریزاسیون واحد به جای استفاده از دو آنتن دایورسیتی فاصله ای استفاده می کنند. همچنین دایورسیتی پلاریزاسیون برای جبران عدم تطبیق پلاریزاسیون که در نتیجه جهت یابی تصادفی موبایل بوجود می آید، به کار می رود.
در سال های اخیر، سیستم های آنتن با دایورسیتی پلاریزاسیون، به دلیل بهره شان، نقش زیادی در گسترش مخابرات بی سیم داشته اند. در سیستم های مخابرات بی سیم باند وسیع، مانند شبکه های محلی بی سیم (WLAN)، چنین سیستم هایی برای کم کردن فیدینگ زیانبار ناشی از اثرات چند مسیرگی به کار می روند.
مقدمه
در کانال های رادیویی موبایل به ندرت LOS بین فرستنده و گیرنده وجود دارد، بخصوص در محیط های داخلی که چنین سرویس هایی مورد احتیاج است. بنابراین انتشار به طور قابل ملاحظه ای بوسیله چند مسیرگی صورت می گیرد و این اثری منفی روی budget لینک دارد. استفاده از توان فرستنده بالاتر ترجیح داده نمی شود، چرا که منجر به افزایش تداخل می شود که در نتیجه، باعث محدودیت ظرفیت شبکه می شود. روش های دایورسیتی راندمان بالایی را در کاهش اثرات فیدینگ چند مسیره دارد.
در فصل اول این سمینار به بررسی انواع دایورسیتی و معرفی تعدادی از این روش های دایورسیتی که متداول تر هستند، خواهیم پرداخت. در فصل دوم، دایورسیتی پلاریزاسیون در مخابرات موبایل در حالت کلی مورد رسیدگی قرار می گیرد و با این مقدمه در فصل دوم، در فصل سوم مدل دایورسیتی پلاریزاسیون در ترمینال موبایل با و بدون در نظر گرفتن اثرات آنتن ها درموبایل ارائه می شود. در فصل چهارم عملکرد این نوع دایورسیتی در کانال های با فیدینگ رایلی مورد بحث قرار می گیرد و بالاخره در فصل پنجم، دایورسیتی پلاریزاسیون سه شاخه در محیط های indoor معرفی می شود و با استفاده از نتایج عملی، مفید بودن استفاده از این روش نشان داده می شود.
فصل اول
بررسی انواع دایورسیتی
دایورسیتی روشی است که با استفاده از آن چندین سیگنال روی مسیرهای با فیدینگ مستقل و حامل اطلاعات یکسان تولید می شوند، که در گیرنده با ترکیب کردن این سیگنال ها، اثرات شدید فیدهای عمیق کاهش می یابد. به عبارت دیگر، دایورسیتی با دریافت چندگانه روشی است که برای مقابله با فیدینگ بکار می رود و عبارت است از روش دستیابی به بیش از یک سیگنال در ورودی گیرنده، به طوری که سیگنال های مختلف از نظر مشخصات آماری دارای فیدینگ تقریبا مستقل از هم باشند. در اینصورت، چنانچه یکی از سیگنال ها دستخوش فیدینگ شود، به احتمال بسیار زیاد در بین سایر سیگنال ها می توان سیگنالی را یافت که دارای فیدینگ با عمق زیاد نباشد. تعداد سیگنال های مختلف موجود در ورودی گیرنده را مرتبه دایورسیتی می گویند.
برخی از خصوصیات دایورسیتی عبارت است از:
1- کاهش عمق فیدینگ سیگنال ترکیبی که از ترکیب سیگنال های مختلف تشکیل شده است.
2- افزایش قابلیت اعتماد تجهیزات.
3- بهبود معیار کیفیت سیستم یا نسبت سیگنال به نویز سیگنال ترکیبی در مقایسه با هر یک از سیگنال ها.
از آنجایی که احتمال داشتن دو فید عمیق برای دو سیگنال مستقل در یک لحظه ناچیز است، اثرات فیدینگ با تلفیق دو سیگنال فوق بطور مؤثری کاهش پیدا می کند.
سمینار برق تاثیر بیولوژیکی امواج الکترومغناطیسی بر روی بافت های بدن
سمینار برق تاثیر بیولوژیکی امواج الکترومغناطیسی بر روی بافت های بدن |
![]() |
دسته بندی | سمینار برق |
فرمت فایل | |
حجم فایل | 5456 کیلو بایت |
تعداد صفحات فایل | 84 |
سمینار برق تاثیر بیولوژیکی امواج الکترومغناطیسی بر روی بافت های بدن
چکیده
بسیاری از محصولات صنعتی، مصرف کنندگان و تقاضاها، سبب استفاده از انرژی الکترومغناطیسی شده است یکی از صورت های انرژی الکترومغناطیسی که موجب افزایش اهمیت جهانی آن شده است انرژی رادیو فرکانسی یا RF می باشد که شامل امواج رادیویی و مایکروویو بوده و برای مخابرات، انتقال و سایر خدمات به کار می رود. در ایالات متحده کمیته فدرال ارتباطات FCC بسیاری از خدمات مخابراتی RF، امکانات و دستگاه هایی را که در ادارات صنایع و سازمان های دولتی و… به کار می رود سیاست گذاری می کند به خاطر مسئولیت مهم این کمیته در حیطه یاد شده، پرسش هایی در زمینه حفاظت از انسان ها در برابر خطرات مربوط به امواج الکترومغناطیسی که توسط فرستنده ها ایجاد می شود مطرح شده است افزایش آگاهی مردم از توسعه تکنولوژی RF منجر به این شده است که مردم آلودگی الکترومغناطیسی را به عنوان یک خطر مهم برای سلامتی بشر تلقی کنند. در این تحقیق اطلاعات حقیقی را ارائه داده و به بسیاری از سؤالاتی که در این زمینه مطرح شده پاسخ می دهیم.
مقدمه
امواج رادیویی و مایکروویو صورت هایی از انرژی الکترومغناطیسی هستند که کلا از آنها به امواج رادیویی یا RF یاد می شود انتشار موج RF و پدیده های مربوط به آن می تواند در بحث هایی با عنوان انرژی، تشعشع و میدان مطرح شود. منظور از تشعشع انتشار انرژی در فضا به شکل موج یا ذره می باشد.
این امواج توسط حرکت بارهای الکتریکی در یک هادی فلزی یا آنتن شکل می گیرند برای مثال، حرکت متناوب بارها (جریان) در یک آنتن در یک ایستگاه رادیو یا تلویزیون ایجاد می شود و یا در یک ایستگاه پایه سلولی، آنتن موج الکترومغناطیسی را تولید می کند که توسط فرستنده به نقاط دور ارسال می شود و توسط یک گیرنده مثل آنتم پشت بام یا آنتن اتومبیل یا آنتن یک دستگاه تلفن سیار دستی دریافت می شود. عبارت میدان الکترومغناطیسی برای نشان دادن حضور انرژی الکترومغناطیسی از یک مکان داده شده به کار می رود. میدان RF می تواند به صورت میدان الکتریکی و یا میدان مغناطیسی تعبیر شود. همانند هر پدیده مربوط به موج، انرژی الکترومغناطیسی می تواند توسط یک فرکانس و طول موج مشخص شود. طول موج (^) فاصله یک سیکل کامل موج الکترومغناطیسی می باشد که در شکل 1-2 نشان داده شده است. فرکانس (f) تعداد دفعات عبور موج الکترومغناطیسی در یک نقطه داده شده در یک ثانیه می باشد برای مثال یک فرستنده رادیویی که توسط یک ایستگاه رادیویی FM فرستاده می شود. طول موجی در حدود 3 متر و فرکانسی در حدود 100 میلیون سیکل در ثانیه یا 100MHz دارد.
یک هرتز برابر یک سیکل در ثانیه است لذا در این حالت 100 میلیون موج الکترومغناطیسی RF در هر ثانیه از یک نقطه داده شده می گذرد. امواج الکترومغناطیسی با سرعت نور در فضا منتشر می شوند. طول موج و فرکانس یک موج الکترومغناطیسی به صورت عکس هم توسط یک فرمول ساده ریاضی به هم مرتبط می شوند، حاصلضرب طول موج در فرکانس برابر با سرعت نور است.
تا زمانی که سرعت نور در یک فضای خلأ داده شده تغییر نکند امواج الکترومغناطیسی با فرکانس بالا طول موج کوتاهتری دارند و امواج با فرکانس پایین طول موج بزرگتری دارند. طیف الکترومغناطیسی (شکل 2-2) شامل فرم های مختلف انرژی الکترومغناطیسی از کمترین انرژی تا بیشترین انرژی مربوط به امواج گاما و x می باشد. امواج رادیویی، مایکروویو، تشعشعات مادون قرمز، نور مرئی و فرابنفش به ترتیب در این رنج قرار دارند. موج RF از طیف الکترومغناطیسی در محدوده 3KHz تا 300GHz قرار دارد. 1 کیلوهرتز معادل یک هزار هرتز بوده و یک مگاهرتز معادل یک میلیون هرتز و یک گیگاهرتز معادل یک بیلیون هرتز است. لذا زمانی که ما رادیویی خود را در فرکانس 101/5 تنظیم می کنید این بدان معنی است که ما امواج رادیویی خود را از ایستگاهی که موج را با فرکانس 101/5MHz ارسال می کند دریافت می کنید.